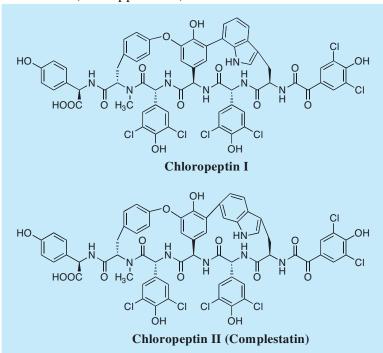

# Chloropeptin


# 1. Discovery, producing organism and structures 1.4)

During screening for new gp120-CD4 binding inhibitors from microorganisms, chloropeptins I and II were isolated from the culture broth of the actinomycete strain WK-3419. While the major component, chloropeptin I was identified as a novel compound, chloropeptin II was identified as complestatin<sup>5,6)</sup>.

The planer structure of chloropeptin I was elucidated by NMR analysis<sup>1,4)</sup>. The stereostructure was elucidated by NOE experiments in combination with molecular dynamics conformation analysis and Monte Carlo calculations<sup>2)</sup>. The total synthesis of chloropeptin I was reported by Deng *et al.*<sup>8)</sup>, Boger *et al.*<sup>9,10,12)</sup> and Zhu *et al.*<sup>11)</sup> (See Appendix I).



Streptomyces sp. WK-3419



## 2. Physical data (Chloropeptin I)

Pale yellow brown powder.  $C_{61}H_{45}N_7O_{15}Cl_6$ ; mol wt 1328.79. Sol. in DMSO, MeOH, alkaline  $H_2O$ , pyridine. Insol. in  $H_2O$ , acetone, CHCl<sub>3</sub>.

### **3. Biological activity**<sup>1,4,7)</sup>

1) Inhibition of gp120-CD4 binding

| Compound                      | $IC_{50} (\mu M)^*$ |
|-------------------------------|---------------------|
| Chloropeptin I (complestatin) | 2.0<br>3.3          |

<sup>\*</sup> Binding activity between recombinant soluble CD4 and recombinant gp120 was determined by ELISA.

#### 2) Inhibition of HIV replication in the viral core protein level

| Compound                        | Viral core protein p24 synthesized (ng/ml) |           |              |  |
|---------------------------------|--------------------------------------------|-----------|--------------|--|
| Compound                        | Day 2                                      | Day 3     | Day 4        |  |
| None<br>Chloropeptin I (7.5 μM) | 0                                          | 97.3<br>0 | 129.6<br>7.3 |  |

#### 3) Anti-HIV-1 activities of chloropeptin I, complestatin, dextran sulfate, and AZT

| Company                                                  | CPE*                               |                                     |                              | Fusion**                  |  |
|----------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------|---------------------------|--|
| Compound EC                                              | EC <sub>50</sub> (µM)              | CC <sub>50</sub> (µM)               | SI                           | IC <sub>50</sub> (μM)     |  |
| Chloropeptin I<br>Complestatin<br>Dextran sulfate<br>AZT | 1.6<br>1.7<br>2.9 (µg/ml)<br>0.011 | >600<br>530<br>>1000 (µg/ml)<br>260 | >380<br>320<br>>350<br>25000 | 0.5<br>1.1<br>2.1 (µg/ml) |  |

<sup>\*</sup> Inhibition effects of chloropeptin I, complestatin, dextran sulfate, and AZT on HIV-1-induced cytopathic effect (CPE) in MT4 cells. The viability of virus- and mock-infected cells was assessed by the MTT method. Anti-CPE effects are expressed as  $EC_{50}$  values compared with  $CC_{50}$  values of mock-infected control cells. The selectivity index (SI) was the ratio of  $IC_{50}$  for CPE to  $CC_{50}$ .

#### 4) Antimicrobial activity of chloropeptin I and complestatin assayed by using paper discs

|                                                                                                                                  | Inhibitory zone (φ mm)             |                    |                                  |                         |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|----------------------------------|-------------------------|--|
| Test organism                                                                                                                    | Chloropeptin I<br>1.0 0.25 (mg/ml) |                    | Complestatin<br>1.0 0.25 (mg/ml) |                         |  |
| Staphylococcus aureus FDA 209P<br>Micrococcus luteus PCI 1001<br>Bacillus subtilis PCI 219<br>Acholeplasma laidlawii PG-8 KB 174 | 11.3<br>13.8<br>11.1<br>12.4*      | 9.8<br>11.0<br>9.6 | 11.0<br>13.1<br>11.0<br>11.0*    | 9.7<br>10.8<br>9.4<br>— |  |

<sup>\*</sup> hazy zone  $50 \,\mu$ l/8 mm disc

#### 4. References

- 1. [553] K. Matsuzaki et al., J. Antibiot. 47, 1173-1174 (1994)
- 2. [649] H. Gouda et al., J. Am. Chem. Soc. 118, 13087-13088 (1996)
- 3. [652] K. Matsuzaki *et al.*, J. Antibiot. **50**, 66-69 (1997)
- 4. [664] H. Tanaka et al., Nippon Nogei Kagaku Kaishi **71**, 530-534 (1997)
- 5. I. Kaneko *et al.*, *J. Antibiot.* **42**, 236-241 (1989)
- 6. H. Seto et al., Tetrahedron Lett. **30**, 4987-4990 (1989)
- 7. [651] H. Tanaka et al., J. Antibiot. **50**, 58-65 (1997)
- 8. H. Deng et al., J. Am. Chem. Soc. 125, 9032-9034 (2003)
- 9. S. P. Breazzano & D. L. Boger, J. Am. Chem. Soc. 133, 18495-18502 (2011)
- 10. H. Shimamura *et al.*, *J. Am. Chem. Soc.* **132**, 7776-7783 (2010)
- 11. Z. Wang et al., Angew. Chem. Int. Ed. 49, 2018-2022 (2010)
- 12. J. Garfunkle *et al.*, *J. Am. Chem. Soc.* **131**, 16036-16038 (2009)

<sup>\*\*</sup> Inhibition effects of chloropeptin I, complestatin, and dextran sulfate on HIV-1-induced syncytia formation in a coculture of virus-infected and uninfected Molt-4 cells. The extent of cell fusion was assayed. Anti-cell fusion effects are expressed as IC<sub>50</sub> values against the fusion of control cells in the absence of a sample.