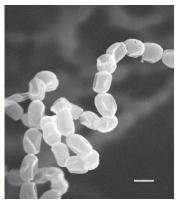
4-Chlorothreonine

1. Discovery, producing organism and structure¹⁾


4-Chlorothreonine was isolated from the culture broth of the actinomycete strain OH-5093 in the course of screening for herbicidal substances. 4-Chlorothreonine is reported as component of syringomycins and syringostatins.²⁾

OH

NH₂

4-Chlorothreonine

CI

Streptomyces sp. OH-5093

2. Physical data

White powder. $C_4H_8NO_3Cl$; mol wt 153.57. Sol. in H_2O , MeOH. Insol. in acetone, CHCl₃. Decomposed in DMSO.

3. Biological activity¹⁾

4-Chlorothreonine inhibited the growth of radish and sorghum at more than 30 μ g/test tube. It inhibited the growth of *Candida albicans* on a synthetic medium (inhibition zone: 21 mm at 50 μ g/disc); growth inhibition was reduced by adding 250 μ g/disc of L-alanine, proline, threonine, and DL- γ -aminobutyric acid. The herbicidal activity is suggested to be caused by inhibition of amino acid metabolism.

Herbicidal activities			
Compound	Rate (µg/tube)	Growth inhibition (%)	
		Radish	Sorghum
4-Chlorothreonine	120 30	70 30	80 30
Bialaphos	120 30	90 40	80 50

Radish and sorghum seeds were grown in small test tubes (2 x 10 cm) at 27°C for 4 days under lights. Plant heights were compared. Bialaphos is a commercial herbicide produced by an actinomycete.

4. Reference

- 1. [552] H. Yoshida et al., J. Antibiot. 47, 1165-1166 (1994)
- 2. N. Fukuchi et al., J. Chem. Soc., Perkin I 875, 1149-1157 (1992)