Diazaquinomycin

$\textbf{1. Discovery, producing organism and structures}^{1,2)}$

Diazaquinomycins were isolated from *Streptomyces* fungal strain OM-704 while screening for antifolate substances in microorganisms. Diazaquinomycin A inhibited the growth of Gram-positive bacteria. 11,18-Diacetoxydiazaquinomycin A exhibited antitumor activity against Meth-A fibrosarcoma. The total synthesis of diazaquinomycin A has been reported by two groups (See Appendix-I). The first total synthesis was achieved by Kelly *et al.*³⁾

Streptomyces sp. OM-704

2. Physical data (Diazaquinomycin A)

Red crystals. $C_{20}H_{22}N_2O_4$; mol wt 354.41. Slightly sol. in DMSO, MeOH, acetone, CHCl₃. Insol. in H_2O , hexane.

3. Screening method⁴⁾

Most general microorganisms cannot incorporate folate-related compounds, but some special microorganisms such as *Streptococcus* sp. and *Lactobacillus* sp. require folate-related compounds

and thus can incorporate them. Antifolates are used clinically as anticancer and antibacterial drugs. To screen the antifolate compounds, we selected a culture broth of soil isolates showing inhibitory activity against a *Streptococcus* sp. grown in a medium containing a limited amount of pteroate, enough amino acids, bases, and nucleosides, (except thymine and thymidine (TdR)), but lacking inhibitory activity against organisms grown in the same medium supplemented with a sufficient amount of TdR.

4. Biological activity^{1,5,6)}

1) Antimicrobial activities

Diazaquinomycin A inhibited the growth of Gram-positive bacteria (MIC: $3.13-50 \mu g/ml$) with the exception of *Bacillus spp*.

Test organism	MIC (µg/m) Test organism	MIC (µg/ml)
Staphylococcus aureus FDA 209P Staphylococcus aureus ATCC 6538P	6.25 6.25	Bacillus subtilis ATCC 6633 Bacillus cereus IFO 3001	>100 >100
Staphylococcus aureus KB 199	6.25	Mycobacterium smegmatis ATCC 607	>100
(erythromycin resistant) Staphylococcus aureus FS 1277	50	Escherichia coli NIHJ JC-2 Klebsiella pneumoniae ATCC 10031	>100 >100
(penicillin resistant) Streptococcus faecium IFO 3181	6.25	Proteus vulgaris IFO 3167 Serratia marcescens ATCC 8100	>100 >100
Streptococcus pyogenes C 203 Micrococcus luteus ATCC 9341	100 3.13	Pseudomonas aeruginosa IFO 3080	>100

Minimal inhibitory concentrations (MIC) were determined by the agar dilution method using heart infusion agar (pH 7.0, 37°C, 20 hrs).

2) Cytotoxicity

 $IC_{50} = 0.86 \mu g/ml$ (Vero cells), 0.23 $\mu g/ml$ (Raji cells)

3) Acute toxicity (mice i.p.)

 $LD_{50} = 100 \text{ mg/kg}$

4) Antitumor activity

11,18-Diacetoxydiazaquinomycin A exhibited antitumor activity against Meth-A fibrosarcoma (10 mg/kg/day, day 1–4, T/C 141%; 100 mg/kg/day, days 1–4, T/C 175%).

diazaquinomycin A

5. Mode of action⁵⁾

The inhibitory site of diazaquinomycin A was confirmed to be thymidylate synthase. It competitively inhibited bacterial and mammalian thymidylate synthases.

Ki values of diazaquinomycin A against thymidylate synthases

Origin	Ki
Enterococcus faecium Ehrlich ascites carcinoma	36 μM 14 μM

6. References

- 1. [250] S. Ōmura et al., J. Antibiot. **35**, 1425-1429 (1982)
- 2. [267] S. Ōmura et al., Tetrahedron Lett. 24, 3643-3646 (1983)
- 3. T. R. Kelly et al., Tetrahedron Lett. **29**, 3545-3546 (1988)
- 4. [326] S. Ömura et al., J. Antibiot. 38, 1016-1024 (1985)
- 5. [327] M. Murata et al., J. Antibiot. 38, 1025-1033 (1985)
- 6. [412] K. Tsuzuki et al., J. Antibiot. 42, 727-737 (1989)