

Herquline

1. Discovery, producing organism and structures $^{1-3)}$

Herquline was found in the culture broth of the fungal strain *Penicillium herquei* Fg-372 while screening for microbial alkaloids¹⁾. The structure and the relative configuration of herquline were elucidated by X-ray crystallographic analysis²⁾. A new analog, herquline B, was found from the broth of the fungal strain Fg-372, and herquline was renamed herquline A³⁾.

2. Physical data (Herquline A)

Colorless plates. $C_{19}H_{26}N_2O_2$; mol wt 314.43. Sol. in DMSO, MeOH, CHCl₃, benzene. Slightly sol. in hexane. Insol. in H_2O .

3. Biological activity^{1,3)}

1) Inhibition of platelet aggregation (induced by ADP in vitro, rabbit PRP)

Herquline A, 100 µg/ml; Herquline B, 1 µg/ml

2) Acute toxicity

Herquline A, LD₅₀>100 mg/kg (mice, i.p.)

3) Antimicrobial activity

Herqulines A and B were inactive against the following test organisms at 1 mg/ml (paper disc method): Staphylococcus aureus FDA209P, Bacillus subtilis PCI219, Micrococcus luteus PCI1001, Pseudomonas aeruginosa P-3, Xanthomonas oryzae, Escherichia coli NIHJ, Candida albicans, Saccharomyces cervisiae, Aspergillus niger, Aspergillus brevipus, and Pyricularia oryzae.

4. References

- 1. [164] S. Ōmura et al., J. Antibiot. **32**, 786-790 (1979)
- 2. [192] A. Furusaki et al., J. Chem. Soc., Chem. Commun. 1980, 698 (1980)
- 3. [601] Y. Enomoto et al., J. Antibiot. 49, 50-53 (1996)