Mangromicin ## $\textbf{1. Discovery, producing organism and structures}^{1\text{-}3\text{)}}$ Mangromicins (A-I) were discovered in a culture broth of an actinomycete strain, *Lechevalieria aerocolonigenes* K10-0216, by Physicochemical Screening. They consist of cyclopentadecane skeletons with a 5,6-dihydro-4-hydroxy-2-pyrone moiety. Mangromicins A and B exhibited anti-trypanosomal sctivity.¹⁾ All the mangromicins possess anti-oxdative activity.²⁻³⁾. Lechevalieria aerocolonigenes K10-0216 **2. Physical data** (Mangromicin A) White powder. C₂₂H₂₄O₇ mol wt 410.50. Sol. in MeOH, EtOH, Insol. in benzene, CHCl₃ | | HO
R ₁
O
R ₃
O
R ₂ | O O R ₄ OH CH ₃ | | | |--|--|---------------------------------------|---------------------|------------------------| | | R ₁ | R ₂ | R ₃ | R ₄ | | Mangromicin D | -CH ₂ CH ₂ CH ₃ | -CH ₂ OH | -H | -CH ₃ | | Mangromicin F | -CH ₂ CH ₃ | -CH ₂ OH | -H | -CH ₃ | | Mangromicin G | -CH ₂ CH ₂ CH ₃ | -CH ₃ | -H | -CH ₂ OH | | Mangromicin H | -CH ₂ CH ₃ | -CH ₃ | -H | -CH ₃ | | Mangromicin I | -CH ₂ CH ₃ | =CH ₂ | -OCH ₃ | -CH ₃ | | O CH ₃ | OH CH3 | 0 | CH ₃ OI | O CH ₃ | | Mangromicin A | | Mangromicin B | | | | H ₃ C O O O CH ₃ | CH ₃ | H ₃ C HO | O O CH ₃ | O
CH₃
CH₃
CH₃ | | Mangrom | icin E | Mar | gromicin | C | | g. omeni z | | | | | ### 3. Biological activity¹⁾ 1) *In vitro* antitrypanosomal activity¹⁾ Mangromicins A and B exhibit *in vitro* antitrypanosomal activity against *Trypanosoma brucei* brucei GuTat3.1 with IC₅₀ values of 2.4 and 43.4 μ g/mL, respectively. #### 2) *In vitro* anti-oxidative activity^{2,3)} Mangromicins show radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and nitric oxide generated from lipopolysaccharide-stimulated RAW264.7 cells. Mangromicins A and I showed the most potent DPPH radical scavenging activity (IC₅₀: $2.4 \mu M$) and nitric oxide scavenging activity, respectively. #### 4. References - 1. [1163] T. Nakashima et al., J. Antibiot. 67, 253-260 (2014) - 2. [1166] T. Nakashima et al., J. Antibiot. 67, 533-539 (2014) - 3. [1179] T. Nakashima et al., J. Antibiot. **68**, 220-222 (2015)