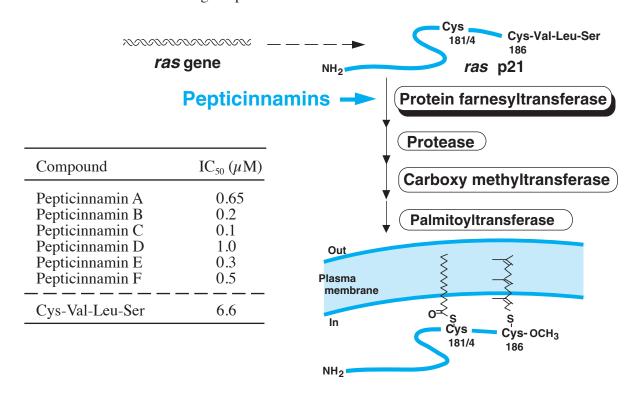

Pepticinnamin

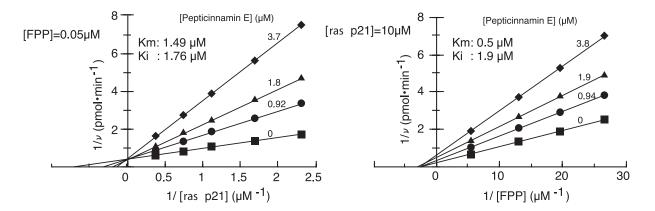
1. Discovery, producing organism and structure 1-3)

Pepticinnamins, consisting of 6 components, were isolated from the culture broth of the actinomycete strain OH-4652 and recognized as inhibitors of protein farnesyltransferase from an assay using a partially purified enzyme from human monocyte THP-1 (ATCC TIB 202). The structure of component E was elucidated. The Stereochemistry of the amino acids was elucidated using chiral HPLC, with the exception of *N*-methyl-(2-chloro-3-hydroxy-4-methoxy)-phenylalanine. Its stereochemistry was revealed by total synthesis of the pepticinnamin E diastereomers³⁾ (See Appendix-I).

Streptomyces sp. OH-4652


2. Physical data (Pepticinnamin E)

White powder. $C_{49}H_{54}N_5O_{10}Cl$; mol wt 908.46. Sol. in DMSO, MeOH, EtOAc, CHCl₃. Insol. in H_2O , hexane.


3. Biological activity $^{1,3,4,5)}$

1) Specific protein farnesyltransferase inhibition

Protein farnesyltransferase catalyses a post-translational modification of ras p21 obligatory for cell transformation of the oncogene protein.

2) Kinetic analysis of protein farnesyltransferase inhibition by pepticinnamin E Pepticinnamin E inhibits protein farnesyltransferase competitively with respect to ras p21 and noncompetitively with respect to farnesyl diphosphate (FPP). The Ki values are shown below.

4. References

- 1 [498] S. Ōmura et al., J. Antibiot. 46, 222-228 (1993)
- 2. [499] K. Shiomi et al., J. Antibiot. 46, 229-234 (1993)
- 3. K. Hinterding et al., Angew. Chem. Int. Ed. 37, 1236-1239 (1998)
- 4. [514] H. Takeshima and S. Ōmura, *Tanpakushitsu Kakusan Koso* **38**, 1695-1703 (1993)
- 5. [554] S. Ōmura and H. Tomoda, Pure Appl. Chem. **66**, 2267-2270 (1994)