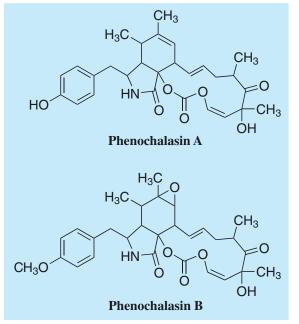

Phenochalasin

$\textbf{1. Discovery, producing organism and structures}^{1,2)}$


Phenochalasins A and B were isolated from the culture broth of *Phomopsis* fungal strain FT-0211^{1, 2)} and recognized based on a cell-based assay, to be inhibitors of macrophage foam cell formation. Although phenochalasins belong to the cytochalasan family, phenochalsin A has the only cytochalasan skeleton containing a phenyl moiety.

Conidioma, Bar: 200 µm

: 200 μm Conidia, Bar: 10 μm *Phomopsis* sp. FT-0211

2. Physical data (Phenochalasin A)¹⁾

White powder. $C_{28}H_{33}NO_7$; mol wt 495.23; Sol. in MeOH, EtOH, acetone, CH_3CN , EtOAc, $CHCl_3$. Insol. in H_2O , hexane.

3. Biological activity^{1,3,4)}

1) Inhibition of lipid droplet formation in mouse peritoneal macrophages^{1,3)}.

Inhibitory activity against lipid droplet formation in macrophages (See also "Beauveriolide" (p. 64)) by cytochalasans was tested in a cell assay using mouse peritoneal macrophages. Phenochalasin A inhibited lipid droplet formation in a dose-dependent manner up to 20 μ M without morphological changes in the macrophages. The other cytochalasans inhibited lipid droplet formation over a narrow concentration range and morphological changes in macrophages were observed.

2) Inhibition of neutral lipid synthesis in macrophages^{1,3)}.

Inhibitory activity against neutral lipid synthesis (cholesteryl ester (CE) and triacylglycerol (TG)) in the cytosolic lipid droplet was tested. Phenochalasin A and cytochalasins D and E inhibited CE synthesis, while the other cytochalasans inhibited both CE and TG synthesis.

Effects of cytochalasans on cholesteryl ester and triacylglycerol synthesis, morphology and toxicity in mouse macrophages.

Compound	CE 1	IC ₅₀ ^a TG	Morphology ^b	Cytotoxicity ^c	Cytotoxicity / IC ₅₀ of CE
Phenochalasin A Phenochalasin B Cytochalasin B Cytochalasin D Cytochalasin E Aspochalasin F Aspochalasin G	0.61 0.2 2.9 2.4 0.20 3.0	>19 0.38 11.4 >19 >19 5.0 2.0	>19 0.18 1.8 1.8 0.19 2.3 2.4	>20 0.5 10 >20 2.0 2.0 1.0	>32.8 2.2 3.4 >8.3 10 0.67 1.0

a: Concentration of a compound which inhibits [\(^{14}\)C]CE or [\(^{14}\)C]TG synthesis from [\(^{14}\)C]oleic acid by 50% in macrophages.

Phenochalasin A showed no activity against ACAT1 and ACAT2 as compared with the IC_{50} values of CE synthesis (0.6 μ M) in the macrophage assay, indicating that their molecular targets in macrophage are not ACAT.⁴⁾

4. References

- 1. [728] H. Tomoda et al., J. Antibiot. **52**, 851-856 (1999)
- 2. [729] H. Tomoda et al., J. Antibiot. 52, 857-861 (1999)
- 3. [740] I. Namatame et al., J. Antibiot. **53**, 19-25 (2000)
- 4. [955] T. Ohshiro et al., J. Antibiot. **60**, 43-51 (2007)

b: Minimal concentration of a compound which shows morphological changes in macrophages.

c: Concentration of a compound which causes 50% viability of macrophages in a MTT assay.