

Virantmycin

1. Discovery, producing organism and structure 1-3)

Virantmycin was isolated from the culture broth of *Streptomyces nitrosporeus* strain AM-2722 and identified as an antiviral compound by the plaque reduction method. The absolute configuration of virantmycin was elucidated by antipodal virantmycin synthesis.⁴⁾ The total synthesis of virantmycin has been reported by many group, the first total synthesis being reported by Raphael *et al.*⁵⁾ (See A ppendix-I).

Streptomyces nitrosporeus AM-2722

2. Physical data¹⁾

White powder. $C_{19}H_{26}NO_3Cl$; mol wt 351.16. Sol. in MeOH, acetone, CHCl₃, benzene, EtOAc. Insol. in H_2O .

3. Biological activity²⁾

Virantmycin inhibits plaque formation caused by both RNA and DNA viruses at relatively low concentrations.

Virantmycin		% of plaque reduction						
concentration	n	R	NA virus	5	DNA virus			
$(\mu g/ml)$	VSV	NDV	WEE	SbV	Vac-DIE	Vac-IHD	HSV-1	HSV-2
0.001 0.01 0.1 1 10	1 97 97 98 100	0 85 85 100 100	27 100 100 100 100	0 100 100 100 100	0 94 99 99 100	23 86 100 100 100	0 28 99 100 100	0 37 99 100 100

4. References

- 1. [195] S. Ōmura et al., J. Antibiot. **33**, 1395-1396 (1980)
- 2. [218] A. Nakagawa et al., J. Antibiot. 34, 1408-1415 (1981)
- 3. [209] S. Ōmura et al., Tetrahedron Lett. 22, 2199-2202 (1981)
- 4. [399] Y. Morimoto et al., Chem. Lett. 1988, 909-912 (1988)
- 5. R. A. Paphael *et al.*, *Te trahedron Lett.* **27**, 1293-1296 (1986)