Virustomycin A © ### 1. Discovery, producing organism¹⁾ and structure²⁾ Virustomycin A was isolated from the culture broth of the actinomycete strain AM-2604 and recognized by the plaque reduction method as an antiviral substance. Streptomyces sp. AM-2604 ### 2. Physical data^{1,3)} Lipophilic pale-yellow needles. $C_{48}H_{71}NO_{14}$; mol wt 885.49. Sol. in CHCl₃, EtOAc, acetone. Slightly sol. in MeOH, EtOH. Insol. in H_2O , hexane. # **3.** Biological activity $^{1,2,4)}$ 1) Virustomycin A diminished 50% of plaque formed by both RNA and DNA viruses at a very low concentration (3 ng/ml). The MIC of virustomycin A against *Trichomonas foetus* is 1.6 μ g/ml.^{1,2)} ## 2) Anti-trypanosomal activity⁴⁾ Virustmycin showed anti-trypanosomal activity against *Trypanosoma b. brusei* GUTat 3.1 strain with IC_{50} of 0.45 ng/ml. #### 4. Mode of action³⁾ Virustomycin A is believed to interfere with the formation of a phosphate donor(s), which is required for the organism nucleotide (UMP, UDP and UTP) formation. | Virustomycin A Precursor | | | Nucleotide formed (% of control) | | | | | |--------------------------|------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | added (µg/ml | | uracil | Uridine | UMP | UDP | UTP* | Total nucleotide | | [³ H]Uridine | 0 | 100
(704cpm) | 100
(1,175) | 100
(3,365) | 100
(5,789) | 100
(6,589) | 100
(15,743) | | | 0.1 | 103 | 90 | 30 | 48 | 35 | 38 | | [³ H]Uracil | 1.0
0
0.1
1.0 | 57
100
(3,050)
83
91 | 64
100
(13)
72
79 | 23
100
(2,625)
63
48 | 19
100
(5,168)
53
42 | 27
100
(8,505)
60
53 | 23
100
(16,298)
58
48 | ^{*}Contains UDP-sugars ### 5. References - 1. [255] S. Ōmura et al., J. Antibiot. 35, 1632-1637 (1982) - 2. [278] S. Ōmura et al., J. Antibiot. 36, 1783-1786 (1983) - 3. [276] S. Ōmura et al., J. Antibiot. **36**, 1755-1761 (1983) - 4. [993] K. Otoguro et al., J. Antibiot. 61, 372-378 (2008)