Laboratory of Pharmacology

Laboratory of Pharmacology

Japanese

Using behavioral, electrophysiological and biochemical approaches, we elucidate the pathophysiology of central nervous system diseases such as chronic pain, pruritus, depression and stress, to find crucial factors leading to the development of novel therapeutic agents.

Research Achievements

Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice

Nakamura R, Iwai T, Takanezawa Y, Shirahata T, Konishi N, Ohshiro Y, Uraguchi S, Tanabe M, Kobayashi Y, Sakamoto K, Nakahara T, Yamamoto M, Kiyono M. Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice. Toxicology. 2024 Jun 19;506:153867. doi: 10.1016/j.tox.2024.153867. Epub ahead of print. PMID: 38906242.

https://authors.elsevier.com/c/1jK5F,6rGhhPxB

Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn

Oyama M, Watanabe S, Iwai T, Tanabe M. Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn. Neuropharmacology. 2024 May 13:109994. doi: 10.1016/j.neuropharm.2024.109994. Epub ahead of print. PMID: 38750803.

https://pubmed.ncbi.nlm.nih.gov/38750803/

SYK-623, a δ Opioid receptor inverse agonist, mitigates chronic stress-induced behavioral abnormalities and disrupted neurogenesis

Iwai T, Mishima R, Hirayama S, Nakajima H, Oyama M, Watanabe S, Fujii H, Tanabe M. SYK-623, a δ Opioid Receptor Inverse Agonist, Mitigates Chronic Stress-Induced Behavioral Abnormalities and Disrupted Neurogenesis. J Clin Med. 2024 Jan 21;13(2):608. doi: 10.3390/jcm13020608. PMID: 38276114; PMCID: PMC10817044.

https://pubmed.ncbi.nlm.nih.gov/38276114/

Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia

Morita M, Watanabe S, Nomura N, Takano-Matsuzaki K, Oyama M, Iwai T, Tanabe M. Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia. J Neurochem. 2023 Mar;164(5):658-670. doi: 10.1111/jnc.15743. Epub 2022 Dec 31. PMID: 36528843.

https://pubmed.ncbi.nlm.nih.gov/36528843/

Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn

Oyama M, Watanabe S, Iwai T, Tanabe M. Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn. Pain. 2022 Feb 1;163(2):334-349. doi: 10.1097/j.pain.0000000000002338. Erratum in: Pain. 2022 Apr 1;163(4):e612. PMID: 33990107.

https://pubmed.ncbi.nlm.nih.gov/33990107/

Mirogabalin activates the descending noradrenergic system by binding to the α2δ-1 subunit of voltage-gated Ca2+ channels to generate analgesic effects

Oyama M, Watanabe S, Iwai T, Tanabe M. Mirogabalin activates the descending noradrenergic system by binding to the α2δ-1 subunit of voltage-gated Ca2+ channels to generate analgesic effects. J Pharmacol Sci. 2021 May;146(1):33-39. doi: 10.1016/j.jphs.2021.01.002. Epub 2021 Jan 7. PMID: 33858653.

https://pubmed.ncbi.nlm.nih.gov/33858653/

Mirogabalin prevents repeated restraint stress-induced dysfunction in mice

Iwai T, Kikuchi A, Oyama M, Watanabe S, Tanabe M. Mirogabalin prevents repeated restraint stress-induced dysfunction in mice. Behav Brain Res. 2020 Apr 6;383:112506. doi: 10.1016/j.bbr.2020.112506. Epub 2020 Jan 23. PMID: 31982462.

https://pubmed.ncbi.nlm.nih.gov/31982462/

Glycosphingolipid Biosynthesis Pathway in the Spinal Cord and Dorsal Root Ganglia During Inflammatory Pain: Early and Late Changes in Expression Patterns of Glycosyltransferase Genes

Morita M, Watanabe S, Oyama M, Iwai T, Tanabe M. Glycosphingolipid Biosynthesis Pathway in the Spinal Cord and Dorsal Root Ganglia During Inflammatory Pain: Early and Late Changes in Expression Patterns of Glycosyltransferase Genes. Neuroscience. 2020 Jan 21;428:217-227. doi: 10.1016/j.neuroscience.2019.12.029. Epub 2020 Jan 7. PMID: 31917338.

https://pubmed.ncbi.nlm.nih.gov/31917338/

Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

Oyama M, Kuraoka S, Watanabe S, Iwai T, Tanabe M. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice. J Pharmacol Sci. 2017 Mar;133(3):162-167. doi: 10.1016/j.jphs.2017.02.011. Epub 2017 Feb 27. PMID: 28302446.

https://pubmed.ncbi.nlm.nih.gov/28302446/